Abstract

Cholesteryl ester transfer protein (CETP), an enzyme which catalyses the transfer of cholesteryl ester from HDL to VLDL, is a promising target for discovery of novel antihyperlipidemic agents due to its pivotal role in HDL metabolism and reverse cholesterol transport. Quantitative structure activity relationship study of a series of CETP inhibitors was carried out using genetic function approximation to study various structural requirements for CETP inhibition. Various lipophilic, electronic, geometric and spatial descriptors were correlated with CETP inhibitory activity. Developed models were found predictive as indicated by their goodr2predvalues and satisfactory internal and external cross-validation results. Study reveals that lipophilicity (ClogP), with parabolic relationship, contributed significantly to the activity along with some electronic, geometric and quantum mechanical descriptors. The present study can be applied to future lead optimization of CETP inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.