Abstract

A dataset of seventy-two (72) cytotoxic compounds of the National Cancer Institute (NCI) was studied by QSAR and docking approaches to gain deeper insights into ligands selectivity on SK-MEL-2 cell line. The QSAR model was built using fifty (50) molecules and the best-generated model based on multiple linear regression showed, respectively good quality of fits (R2 (0.864), Radjusted2 (0.845), Q2cv (0.799) and Rpred2 (0.706)). The model's predictive ability was determined by a test set of twenty-two (22) compounds. Compounds 30 and 41 were selected as templates for in silico design because they had high pGI50 activity and are in the model's applicability domain. The obtained information from the model was explored to design novel molecules by introducing various modifications. Moreover, the designed compounds with better-predicted activity (pGI50) values were selected and docked on the active site of the protein (PDB-CODE: 3OG7) which is responsible for melanoma cancer to elucidate their binding mode. AN2 (−12.1kcalmol-1) and AC4 (−12.4kcalmol-1) showed a better binding score for the target when compared with (vemurafenib, −11.3kcalmol-1) the known inhibitor of the target (V600E-BRAF). These findings may be very helpful in early anti-cancer drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.