Abstract

A thorough understanding of the relationships between the physicochemical properties and the behavior of nanomaterials in biological systems is mandatory for designing safe and efficacious nanomedicines. Quantitative structure-activity relationship (QSAR) methods help to establish such relationships, although their application to model the behavior of nanomaterials requires new ideas and applications to account for the novel properties of this class of compounds. This review presents and discusses a number of recent inspiring applications of QSAR modeling and descriptors for nanomaterials with a focus on approaches that attempt to describe the interactions that take place at the nano/bio-interface. The paradigm shift from classic to nano-QSAR currently relies on both theoretically and experimentally derived descriptors, and the solutions adopted for modeling are diverse, mirroring the structural and behavioral heterogeneity of nanomaterials. Research should focus on both aspects of a QSAR study: the generation of nanospecific theoretical descriptors and experimental test data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.