Abstract
Drug resistance to existing antibiotics poses alarming threats to global public health, which inspires heightened interests in searching for new antibiotics, including antimicrobial peptides (AMPs). Accurate prediction of antibacterial activities of AMPs may expedite novel AMP design and reduce the costs and efforts involved in laboratory screening. In the present study, a novel quantitative prediction method of AMP was established by quantitative structure-activity relationship (QSAR) modeling based on the physicochemical properties of amino acids. The indices of these physicochemical properties were used to define AMP. The structural variables were optimized by stepwise regression (STR). Three series of AMPs from the QSAR model were constructed by multiple linear regressions (MLR). These QSAR models showed good performance in reliability and predictability. The normalized regression coefficients of the QSAR model and the contribution of amino acids at each position of AMP may determine the suitableness of a particular residue at any given position. QSAR models constructed by STR-MLR should prove to be useful tools in peptide design with respect to the calculation, explanation, good and reliable performance, and definition of physiochemical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.