Abstract
The in silico modelling of bio-concentration factor (BCF) is of considerable interest in environmental sciences, because it is an accepted indicator for the accumulation potential of chemicals in organisms. Numerous QSAR models have been developed for the BCF, and the majority utilize the octanol/water partition coefficient (log P) to account for the penetration characteristics of the chemicals. The present work used descriptors from a variety of software packages for the development of a multi-linear regression model to estimate BCF. The modelled data set of 473 diverse compounds covers a wide range of log BCF values. In the proposed QSAR model, most of the variation is described by the calculated solubility in water. Other contributing descriptors describe, for instance, hydrophobic surface area, hydrogen bonding and other electronic effects. The model was validated internally by using a variety of statistical approaches. Two external validations were also performed. For the former validation, a subset from the same data source was used. The 2nd external validation was based on an independent data set collected from different resources. All validations showed the consistency of the model. The applicability domain of the model was discussed and described and a thorough outlier analysis was performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.