Abstract

New anti-tuberculosis (anti-TB) drugs are urgently needed to battle drug-resistant Mycobacterium tuberculosis strains and to shorten the current 6–12-month treatment regimen. In this work, we have continued the efforts to develop chalcone-based anti-TB compounds by using an in silico design and QSAR-driven approach. Initially, we developed SAR rules and binary QSAR models using literature data for targeted design of new heteroaryl chalcone compounds with anti-TB activity. Using these models, we prioritized 33 compounds for synthesis and biological evaluation. As a result, 10 heteroaryl chalcone compounds (4, 8, 9, 11, 13, 17–20, and 23) were found to exhibit nanomolar activity against replicating mycobacteria, low micromolar activity against nonreplicating bacteria, and nanomolar and micromolar against rifampin (RMP) and isoniazid (INH) monoresistant strains (rRMP and rINH) (<1 μM and <10 μM, respectively). The series also show low activity against commensal bacteria and generally show good selectivity toward M. tuberculosis, with very low cytotoxicity against Vero cells (SI = 11–545). Our results suggest that our designed heteroaryl chalcone compounds, due to their high potency and selectivity, are promising anti-TB agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.