Abstract

Cell division is a crucial process for the growth and development of all living organisms. Unfortunately, uncontrolled cell division and growth is a hallmark of cancer, leading to the formation of tumors. The Human Eg5 protein, also known as the mitotic kinesin Eg5, plays a vital role in the regulation of cell division and its dysfunction has been linked to cancer development. This study aimed to identify new inhibitors of the Human Eg5 protein. Over 2000 Traditional Chinese Medicine (TCM) compounds were screened through a combination of virtual and structure-based screening methods. The top five compounds (Compounds 1–5) showed improved binding affinity to Human Eg5 compared to the standard drug Monastrol, as demonstrated by docking and MMGBSA scores, as well as interactions with key amino acids GLY 116 and GLY 118. The potential absorption and bioactivity of these compounds were also predicted through ADMET properties and a QSAR model, respectively, and showed improved results compared to the standard. Further quantum mechanics docking confirmed the better binding affinity of the lead compound, Compound 1. Our findings highlight Compound 1–5 as promising hits for inhibiting Human Eg5 and the need for experimental validation of their potential in treating cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call