Abstract

With about 400,000 annual deaths worldwide, malaria remains a public health burden in tropical and subtropical areas, especially in low-income countries. Selection of drug-resistant Plasmodium strains has driven the need to explore novel antimalarial compounds with diverse modes of action. In this context, biodiversity has been widely exploited as a resourceful channel of biologically active compounds, as exemplified by antimalarial drugs such as quinine and artemisinin, derived from natural products. Thus, combining a natural product library and quantitative structure–activity relationship (QSAR)-based virtual screening, we have prioritized genuine and derivative natural compounds with potential antimalarial activity prior to in vitro testing. Experimental validation against cultured chloroquine-sensitive and multi-drug-resistant P. falciparum strains confirmed the potent and selective activity of two sesquiterpene lactones (LDT-597 and LDT-598) identified in silico. Quantitative structure–property relationship (QSPR) models predicted absorption, distribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK) parameters for the most promising compound, showing that it presents good physiologically based pharmacokinetic properties both in rats and humans. Altogether, the in vitro parasite growth inhibition results obtained from in silico screened compounds encourage the use of virtual screening campaigns for identification of promising natural compound-based antimalarial molecules.

Highlights

  • Malaria is a mosquito-borne disease transmitted by the bite of Anopheles mosquitoes infected with Plasmodium parasites

  • It is estimated that disruption of malaria control endeavors in Africa due to the COVID-19 pandemic could lead to a malaria burden in 2020 that is the double of that registered in 2019 [3]

  • The entire MolPort database of commercially available natural products and derivatives containing approximately 120,000 chemical compounds was screened for identification of potentially active compounds against both P. falciparum chloroquine-sensitive (3D7) and multi-drug-resistant (W2) strains

Read more

Summary

Introduction

Malaria is a mosquito-borne disease transmitted by the bite of Anopheles mosquitoes infected with Plasmodium parasites. Organization (WHO) recorded 228 million cases of the disease worldwide with an estimate of approximately 400,000 malaria-related deaths [1]. The decreasing rate of cases tracked by the WHO in the last decade has stalled in the last 5 years [1], portraying how fragile the gains achieved can be. The COVID-19 pandemic, which arose in 2019, menaces these gains even further, as the spread of SARS-CoV-2 leads to extra pressure on health systems, especially in low-resourced settings [2]. It is estimated that disruption of malaria control endeavors in Africa due to the COVID-19 pandemic could lead to a malaria burden in 2020 that is the double of that registered in 2019 [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call