Abstract
A new algorithm of Demmel et al. for computing the singular value decomposition (SVD) to high relative accuracy begins by computing a rank-revealing decomposition (RRD). Demmel et al. analyse the use of Gaussian elimination with complete pivoting (GECP) for computing the RRD. We investigate the use of QR factorization with complete pivoting (that is, column pivoting together with row sorting or row pivoting) as an alternative to GECP, since this leads to a faster SVD algorithm. We derive a new componentwise backward error result for Householder QR factorization and combine it with the theory of Demmel et al. to show that high relative accuracy in the computed SVD can be expected for matrices that are diagonal scalings of a well-conditioned matrix. An a posteriori error bound is derived that gives useful estimates of the relative accuracy of the computed singular values. Numerical experiments confirm the theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.