Abstract

We experimentally demonstrate one-to-five quadrature phase-shift keying (QPSK) wavelength multicasting based on four-wave mixing in bulk semiconductor optical amplifier. The input 25 Gb/s nonreturn-to-zero QPSK signal is successfully multicast to five new wavelengths with all information preserved. All the multicast channels are with a power penalty less than 1.1 dB at a bit error rate (BER) of 10-3. A characterization of the conversion efficiency in terms of pump and signal powers using the BER as figure of merit is also presented, the results indicate that the pump and signal powers should be optimized to eliminate the introduced deleterious nonlinear components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.