Abstract

In this article, we aim to solve high-dimensional convex quadratic programming (QP) problems with a large number of quadratic terms, linear equality, and inequality constraints. To solve the targeted QP problem to a desired accuracy efficiently, we consider the restricted-Wolfe dual problem and develop a two-phase Proximal Augmented Lagrangian method (QPPAL), with Phase I to generate a reasonably good initial point to warm start Phase II to obtain an accurate solution efficiently. More specifically, in Phase I, based on the recently developed symmetric Gauss-Seidel (sGS) decomposition technique, we design a novel sGS-based semi-proximal augmented Lagrangian method for the purpose of finding a solution of low to medium accuracy. Then, in Phase II, a proximal augmented Lagrangian algorithm is proposed to obtain a more accurate solution efficiently. Extensive numerical results evaluating the performance of QPPAL against existing state-of-the-art solvers Gurobi, OSQP, and QPALM are presented to demonstrate the high efficiency and robustness of our proposed algorithm for solving various classes of large-scale convex QP problems. The MATLAB implementation of the software package QPPAL is available at https://blog.nus.edu.sg/mattohkc/softwares/qppal/ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call