Abstract

G-quadruplexes (G4s) are non-canonical nucleic acid conformations that are widespread in all kingdoms of life and are emerging as important regulators both in RNA and DNA. Recently, two new higher-order architectures have been reported: adjacent interacting G4s and G4s with stable long loops forming stem-loop structures. As there are no specialized tools to identify these conformations, we developed QPARSE. QPARSE can exhaustively search for degenerate potential quadruplex-forming sequences (PQSs) containing bulges and/or mismatches at genomic level, as well as either multimeric or long-looped PQS (MPQS and LLPQS, respectively). While its assessment versus known reference datasets is comparable with the state-of-the-art, what is more interesting is its performance in the identification of MPQS and LLPQS that present algorithms are not designed to search for. We report a comprehensive analysis of MPQS in human gene promoters and the analysis of LLPQS on three experimentally validated case studies from HIV-1, BCL2 and hTERT. QPARSE is freely accessible on the web at http://www.medcomp.medicina.unipd.it/qparse/index or downloadable from github as a python 2.7 program https://github.com/B3rse/qparse. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.