Abstract
Quality of Service (QoS) optimization is an important design goal in wireless video transmission. The application (APP) layer 802.11e medium access control (MAC) layer, and physical (PHY) layer of the wireless protocol stack can be jointly designed for the exchange of information. This will optimize the performance of wireless network for real-time digital video transmission. This paper proposes an innovative ‘QoS-Optimized Adaptive Multi-layer (OQAM)’ architecture. It ensures reliable and high-quality video transmission over communication channels. The channel exhibits wide variability in throughput, delay, and packet loss. The simulation is performed using EvalVid and Network Simulator-2. Enhanced Intra Prediction (EnIP) algorithm with H.264/MPEG4 Advanced Video Coding (AVC) is proposed at the APP layer. This H.264/MPEG4 AVC is a non-scalable video enCOder/DECoder (CODEC). Improved MAC Adaptive Retry Limit (IMALr) is proposed as smart-packet drop mechanism at the 802.11e MAC layer. It uses packet overflow drop (Pov) and expired-time packet discard (Pex) algorithm. Enhanced Adaptive Forward Error Correction (EnAFEC) is proposed at the PHY layer. The aforementioned algorithms are jointly considered in the proposed OQAM architecture, which increases the coding efficiency, reduces end-to-end delay and increases reliability of wireless network for real-time Video over Wireless (VoW) transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.