Abstract

Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.