Abstract
In this paper, we investigate the problem of quality-of-service (QoS) multicast routing for multimedia group communications. We first develop a unified framework for achieving QoS multicast trees using intelligent computational methods. The framework consists of the model for multimedia communication network, the formulation of QoS multicast routing problem, and three key components used in intelligent computational methods-based QoS multicast routing algorithms. Then we propose three QoS multicast algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and Tabu search), separately. In these algorithms, both the network resource requirements and the end-to-end delay are considered as the QoS parameters. Various issues are analyzed and designed for applying these three intelligent computational methods to construct QoS multicast trees. By simulation, we evaluate the performance of these three algorithms on a small-scale real-world multimedia communication network and a randomly generated large-scale network. Simulation results show that our algorithms can find near-optimal QoS multicast trees with high success rate. We also compare the running time among them, which help explain the algorithmic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.