Abstract
Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center. These applications are submitted to the cloud in the form of simulation jobs. Meanwhile, the management and scheduling of simulation jobs are playing an essential role to offer efficient and high productivity computational service. In this paper, we design a management and scheduling service framework for simulation jobs in two-tier virtualization-based private cloud data center, named simulation execution as a service (SimEaaS). It aims at releasing users from complex simulation running settings, while guaranteeing the QoS requirements adaptively. Furthermore, a novel job scheduling algorithm named adaptive deadline-aware job size adjustment (ADaSA) algorithm is designed to realize high job responsiveness under QoS requirement for SimEaaS. ADaSA tries to make full use of the idle fragmentation resources by tuning the number of requested processes of submitted jobs in the queue adaptively, while guaranteeing that jobs’ deadline requirements are not violated. Extensive experiments with trace-driven simulation are conducted to evaluate the performance of our ADaSA. The results show that ADaSA outperforms both cloud-based job scheduling algorithm KCEASY and traditional EASY in terms of response time (up to 90%) and bounded slow down (up to 95%), while obtains approximately equivalent deadline-missed rate. ADaSA also outperforms two representative moldable scheduling algorithms in terms of deadline-missed rate (up to 60%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modeling, Simulation, and Scientific Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.