Abstract

AbstractMultiple‐input multiple‐output (MIMO) enabled wireless sensor networks (WSNs) are becoming increasingly important since significant performance enhancement can be realized. In this paper, we propose a packet forward strategy for MIMO sensor networks by jointly considering channel coding, rate adaptation, and power allocation. Each sensor node has multiple antennas and uses orthogonal space time block codes (OSTBC) to exploit both spatial and temporal diversities. The objective is to determine the optimal routing path that achieves the minimum symbol error rate (SER) subject to the source‐to‐destination (S‐D) energy consumption constraint. This SER‐based quality‐of‐service (QoS) aware packet forwarding problem is formulated into the framework of dynamic programming (DP). We then propose a low‐complexity and near‐optimal approach to considerably reduce the computation complexity, which includes state space partition and state aggregation techniques. Simulations indicate that the proposed protocol significantly outperforms traditional algorithms. Further still, the performance gain increases with tighter S‐D energy constraint. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call