Abstract

The problem of QoS-aware multiobjective optimization is an important issue for Web services selection in distributed computing environment. In this paper, a novel algorithm called MOASS (multiobjective optimization algorithm for web service selection) is proposed through analyzing the genetic operators such as constraint handling, the initial population generation, fitness assignment, and diversity preservation. Compared with MOEAWP (Yu et al., 2007), simulation results show that the feasible objective region can be filled uniformly with the optimal solutions obtained by MOASS under different test applications. In the case of higher constraints especially, MOASS can obtain more high-quality and evenly distributed nondominated solutions than MOEAWP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.