Abstract

In cellular networks, maximizing the energy efficiency (EE) while satisfying certain QoS requirements is challenging. In this article, we utilize effective capacity (EC) theory as an effective means of meeting these challenges. Based on EC and taking a realistic base station (BS) power consumption model into account, we develop a novel energy efficiency (EE) metric: effective energy efficiency (EEE), to represent the delivered service bit per energy consumption at the upper layer with QoS constraints. Maximizing the EEE problem with EC constraints is addressed and then an optimal power control scheme is proposed to solve it. After that, the EEE and EC tradeoff is discussed and the effects of diverse QoS parameters on EEE are investigated through simulations, which provides insights into the quality of service (QoS) provision, and helps the system power consumption optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call