Abstract

Service composition and optimal selection (SCOS) is one of the key issues for implementing a cloud manufacturing system. Exiting works on SCOS are primarily based on quality of service (QoS) to provide high-quality service for user. Few works have been delivered on providing both high-quality and low-energy consumption service. Therefore, this article studies the problem of SCOS based on QoS and energy consumption (QoS-EnCon). First, the model of multi-objective service composition was established; the evaluation of QoS and energy consumption (EnCon) were investigated, as well as a dimensionless QoS objective function. In order to solve the multi-objective SCOS problem effectively, then a novel globe optimization algorithm, named group leader algorithm (GLA), was introduced. In GLA, the influence of the leaders in social groups is used as an inspiration for the evolutionary technology which is design into group architecture. Then, the mapping from the solution (i.e., a composed service execute path) of SCOS problem to a GLA solution is investigated, and a new multi-objective optimization algorithm (i.e., GLA-Pareto) based on the combination of the idea of Pareto solution and GLA is proposed for addressing the SCOS problem. The key operators for implementing the Pareto-GA are designed. The results of the case study illustrated that compared with enumeration method, genetic algorithm (GA), and particle swarm optimization, the proposed GLA-Pareto has better performance for addressing the SCOS problem in cloud manufacturing system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call