Abstract
With the aim of accomplishing intelligence tasks, semantic communications transmit task-related information only, yielding significant performance gains over conventional communications. To guarantee user requirements for different tasks, we study the semantic-aware resource allocation in a multi-cell multi-task network in this paper. Specifically, an approximate measure of semantic entropy is first developed to quantify the semantic information for different tasks, based on which a novel quality-of-experience (QoE) model is proposed. We formulate the QoE-aware resource allocation in terms of the number of transmitted semantic symbols, channel assignment, and power allocation. To solve this problem, we first decouple it into two independent subproblems. The first one is to optimize the number of transmitted semantic symbols with given channel assignment and power allocation, which is solved by the exhaustive search method. The second one is the channel assignment and power allocation subproblem, which is modeled as a many-to-one matching game and solved by the proposed low-complexity matching algorithm. Simulation results demonstrate the effectiveness and superiority of the proposed method on the overall QoE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.