Abstract

Dynamic Adaptive Streaming over HTTP (DASH) enables the video player to adapt the bitrate of the video while streaming to ensure playback without interruptions even with varying throughput. A DASH server hosts multiple representations of the same video, each of which is broken down into small segments of fixed playback duration. The video bitrate adaptation is purely driven by the player at the endhost. Typically, the player employs an Adaptive Bitrate (ABR) algorithm, that determines the most appropriate representation for the next segment to be downloaded, based on the current network conditions and user preferences. The aim of an ABR algorithm is to dynamically manage the Quality of Experience (QoE) of the user during the playback. ABR algorithms manage the QoE by maximizing the bitrate while at the same time trying to minimize the other QoE metrics: playback start time, duration and number of buffering events, and the number of bitrate switching events. Typically, the ABR algorithms manage the QoE by using the measured network throughput and buffer occupancy to adapt the playback bitrate. However, due to the video encoding schemes employed, the sizes of the individual segments may vary significantly. For low bandwidth networks, fluctuation in the segment sizes results in inaccurate estimation the expected segment fetch times, thereby resulting in inaccurate estimation of the optimum bitrate. In this paper we demonstrate how the Segment-Aware Rate Adaptation (SARA) algorithm, that considers the measured throughput, buffer occupancy, and the variation in segment sizes helps in better management of the users' QoE in a DASH system. By comparing with a typical throughput-based and buffer-based adaptation algorithm under varying network conditions, we demonstrate that SARA manages the QoE better, especially in a low bandwidth network. We also developed AStream, an open-source Python-based emulated DASH-video player that was used to evaluate three different ABR algorithms and measure the QoE metrics with each of them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.