Abstract
The JPEG is one of the most widely used lossy image-compression standards, whose compression performance depends largely on a quantization table. In this work, we utilize a Convolutional Neural Network (CNN) to generate an image-adaptive quantization table in a standard-compliant way. We first build an image set containing more than 10,000 images and generate their optimal quantization tables through a classical genetic algorithm, and then propose a method that can efficiently extract and fuse the frequency and spatial domain information of each image to train a regression network to directly generate adaptive quantization tables. In addition, we extract several representative quantization tables from the dataset and train a classification network to indicate the optimal one for each image, which further improves compression performance and computational efficiency. Tests on diverse images show that the proposed method clearly outperforms the state-of-the-art method. Compared with the standard table at the compression rate of 1.0 bpp, the regression and classification network provide average Peak Signal-to-Noise Ratio (PSNR) gains of nearly 1.2 and 1.4 dB. For the experiment under Structural Similarity Index Measurement (SSIM), the improvements are 0.4% and 0.54%, respectively. The proposed method also has competitive computational efficiency, as the regression and classification network only take 15 and 6.25 milliseconds, respectively, to process a 768 W 512 image on a single CPU core at 3.20 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.