Abstract

Dose-response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi-mechanistic models known as single-hit models, such as the exponential and the exact beta-Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single-hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so-called single-hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single-hit models. Further analysis of the model framework is facilitated by formulating the single-hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single-hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model-consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model-consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model-consistent expression for the mean per-exposure dose that produces the correct total risk from repeated exposures is developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.