Abstract
The far-red fluorescent protein HcRed was investigated using molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) calculations. Three models of HcRed (anionic chromophore) were considered, differing in the protonation states of nearby Glu residues (A: Glu214 and Glu146 both protonated; B: Glu214 protonated and Glu146 deprotonated; C: Glu214 and Glu146 both deprotonated). SCC-DFTB/MM MD simulations of model B yield good agreement with the available crystallographic data at ambient pH. Bond lengths in the QM region are well reproduced, with a root mean square (rms) deviation between experimental and average MD data of 0.079 A; the chromophore is almost co-planar, which is consistent with experimental observation; and the five hydrogen bonds involving the chromophore are conserved. QM/MM geometry optimizations were performed on representative snapshot structures from the MD simulations for each model. They confirm the structural features observed in the MD simulations. According to the DFT(B3LYP)/MM results, the cis-conformation of the chromophore is more stable than the trans-form by 9.1-12.9 kcal mol(-1) in model B, and by 12.4-19.9 kcal mol(-1) in model C, consistent with the experimental preference for the cis-isomer. However, in model A when both Glu214 and Glu146 are protonated, the stability is inverted with the trans-form being favored. The different protonation states of the titratable active-site residues Glu214 and Glu146 thus critically influence the manner in which the relative stability and degree of planarity of the cis- and trans-conformers vary with pH. Coupled with the known correlation of chromophore conformation with fluorescence efficiency, this work provides a detailed structural basis for the observed phenomenon that red fluorescent proteins such as HcRed, mKate and Rtms5 show bright fluorescence at high pH.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.