Abstract

ABSTRACT A QM/MM method is an atomistic simulation algorithm that allows researchers to describe different regions of a system with different physical laws. Here, we review this hybrid method’s applications to the study of copper, silver, and gold atoms and clusters interacting with biological and organic molecules. In particular, we highlight efforts to characterize the relaxation process in a copper(I) phenanthroline complex; details of Cu’s secretory path; the atomic structure of Ag-homopolymers of cytosine and guanine; DNA-stabilized silver clusters; effects related to temperature and solvent on thiolate-protected gold clusters’ optical properties; and the effect of a medium-like noble gas on a cluster’s optical spectrum. The results of these efforts demonstrate how QM/MM methods are applied successfully to a wide range of processes that include the study of excited state evolution, charge transport, light absorption, and emission, and determining an atomic structure in the absence of crystal-determined structure. We expect QM/MM methods will continue supporting the exploration of novel hybrid organo-metallic materials and their safe use in the environment, while also providing guidance on mechanisms to deal with diseases associated with a failure in cells’ proper behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.