Abstract

We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol-1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.