Abstract

It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur simultaneously (Alavi et al. in Dalton Trans 47:8283–8291, 2018). So the mechanism that converts biliverdin into verdoheme is the subject of some controversy. The detailed conversion of verdoheme to biliverdin was demonstrated before by the Jerusalem group, using combined quantum mechanical and molecular mechanical (QM/MM) calculations. Conversion of iron biliverdin to iron verdoheme in the presence of H+ was investigated using the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. Two spin states, singlet and triplet, were considered for the conversion of biliverdin to verdoheme. The reactant and product are triplet and singlet in their ground states, respectively. The potential energy surface suggests that a spin inversion takes place during the course of reaction after TS2. The ring closing process is exothermic by 5.8 kcal/mol with a kinetic barrier of 16.5 kcal/mol. The activation barrier for removing OH from the ring to produce iron verdoheme is estimated to be 23.2 kcal/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.