Abstract
The mechanism of charge transfer among tris(8-hydroxyquinolinate)aluminum (Alq3) molecules in the electron-transporting layer (ETL) under amorphous conditions was theoretically investigated using both quantum mechanical/molecular mechanical (QM/MM) calculations and molecular dynamics (MD) simulations. The rate constant of the electron transfer was estimated for the equilibrated structure taken from the QM/MM MD simulations, based on the hopping model and Marcus theory. It was found that the coordination of a (LiF)4 cluster in ETL drastically lowers the energy of the lowest unoccupied molecular orbital in the Alq3 molecule. The small rate constant, namely the slow charge mobility, in ETL is believed to be causally related to the low-lying delocalized unoccupied molecular orbital of Alq3 coordinated by the (LiF)4 cluster. The results suggest that their interaction has a considerable influence on efficiency and is attributed in part to ETL degradation in organic light-emitting diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.