Abstract

Adenosine-5'-triphosphate (ATP) hydrolysis represents a most important reaction in biology. Despite extensive research efforts, the mechanism for ATP hydrolysis in aqueous solution still remains under debate. Previous theoretical studies often predefined reaction coordinates to characterize the mechanism for ATP hydrolysis in water with Mg(2+) by evaluating free energy profiles through these preassumed reaction paths. In the present work, a nudged elastic band method is applied to identify the minimum energy path calculated with a hybrid quantum mechanics and molecular mechanics approach. Along the reaction path, the free energy profile was obtained to have a single transition state and the activation energy of 32.5 kcal/mol. This transition state bears a four-centered structure that describes a concerted nature of the reaction. In the More-O'Ferrall-Jencks diagram, the results show that the reaction proceeds through a concerted path before the system reaches the transition state and along an associative path after the transition state. In addition, the calculated reaction free energy is -7.0 kcal/mol, in good agreement with experiment, capturing the exothermic feature of MgATP(2-) hydrolysis in aqueous solution, whereas the reaction was often shown to be endothermic in the previous theoretical studies. As Mg(2+) is required for ATP hydrolysis in cells, its role in the reaction is also elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.