Abstract

Trunk canker disease caused by Botryosphaeria dothidea with a prolonged latent infection phase poses a serious threat to Chinese hickory production. To further understand the epidemiological characteristics and develop reasonable management techniques, a quantitative loop-mediated isothermal amplification (q-LAMP) assay was developed to quantitatively monitor B. dothidea in hickory plants, water, and air samples. Specific primers were designed based on the different sites of the β-tubulin sequence between B. dothidea and other fungi commonly found on Chinese hickory. At the optimum reaction temperature of 65.9°C, this loop-mediated isothermal amplification (LAMP) assay can specifically distinguish B. dothidea from other tested fungi. The limit of detection of LAMP assays for B. dothidea was 0.001 ng/µl of pure genomic DNA and 10 spores per 1 ml of water. The q-LAMP assay enables rapid detection of B. dothidea within 60 min in hickory trunk, water in hickory forests, and spores captured on tapes. These results provide a powerful and convenient tool for monitoring B. dothidea, which could be applied widely in epidemiology, forecast, and management of tree canker disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call