Abstract

A context-aware service in a smart environment aims to supply services according to user situational information, which changes dynamically. Most existing context-aware systems provide context-aware services based on supervised algorithms. Reinforcement algorithms are another type of machine-learning algorithm that have been shown to be useful in dynamic environments through trial-and-error interactions. They also have the ability to build excellent self-adaptive systems. In this study, we aim to incorporate reinforcement algorithms (Q-learning) into a context-aware system to provide relevant services based on a user’s dynamic context. To accelerate the convergence of reinforcement learning (RL) algorithms and provide the correct services in real situations, we propose a combination of the Q-learning and case-based reasoning (CBR) algorithms. We then analyze how the incorporation of CBR enables Q-learning to become more efficient and adapt to changing environments by continuously producing suitable services. Simulation results demonstrate the effectiveness of the proposed approach compared to the traditional CBR approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.