Abstract

BackgroundNeuromyelitis-optica (NMO) and multiple-sclerosis (MS) are inflammatory- demyelinating-diseases of the central-nervous-system (CNS). In a previous study, we identified 17 miRNAs that were significantly upregulated in the peripheral blood of patients with NMO, relative to healthy controls (HCs). Target gene analysis have demonstrated that QKI is targeted by 70% of the upregulated miRNAs. QKI gene encodes for a RNA-binding-protein that plays a central role in myelination. QKI variants 5, 6, 7 (QKI-V5, QKI-V6, QKI-V7) are generated via alternative splicing. Given the role played by QKI in myelination we aimed to study the expression levels of QKI variants in the circulation of patients with NMO and MS and in the circulation and brain tissue of mice-model to CNS-inflammatory-demyelinating-disease. MethodsRNA and protein expression levels of QKI variants QKI-V5, QKI-V6 and QKI-V7 were determined in the blood of patients with NMO (n = 23) or MS (n = 13). The effect of sera from patients on the expression of QKI in normal peripheral-blood-mononuclear-cells (PBMCs) or glial cells was explored. The mog-experimental-autoimmune-encephalomyelitis (EAE) mouse model was used to study the correlation between the changes in the expression levels of QKI in the blood to those in the brain. ResultsRNA and protein expression of QKI-V5 was decreased in the peripheral blood of patients with NMO and multiple-sclerosis. Incubation of normal peripheral-blood-mononuclear-cells or glial cells with sera of patients significantly reduced the expression of QKI-V5. The blood and brain of EAE mice exhibited a corresponding decrease in QKI-V5 expression. ConclusionThe downregulation in the expression of QKI-V5 in the blood of patients with CNS-inflammatory-demyelinating-diseases and in the brain and blood of EAE mice is likely caused by a circulating factor and might promote re-myelination by regulation of myelin-associated genes. Key words: QKI variants, Multiple sclerosis (MS), Neuromyelitis optica (NMO), Astrocytes, Demyelination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.