Abstract

Ethnopharmacological relevancePsoriasis, an immune system disorder, is a chronic relapsing disease that cannot be cured. Chinese herbal medicine is gradually considered a promising alternative treatment for psoriasis due to its multiple effects, ability to target multiple pathways and lower toxicity. Qingre Lishi Decoction (QRLSD) is effective in clinical treatment. However, its related molecular mechanism remains to be elucidated. Aim of the studyThe purpose of this research was to investigate the therapeutic impacts of Qingre Lishi Decoction on the murine model of psoriasis-like skin lesions induced by imiquimod and to reveal the underlying mechanisms. Materials and methodsFirst, QRLSD was orally administered to evaluate its efficacy in an imiquimod (IMQ)-induced psoriasis mouse model. Further, UPLC-Q-TOF/MS was used to analyze the compounds of QRLSD. To investigate the mechanism and main targets of QRLSD for treating psoriasis, network pharmacology and molecular docking methods were utilized. Finally, To further confirm the anti-psoriasis target, dendritic cells derived from bone marrow (BMDCs) were cultured in vitro. ResultsIn vivo experiments found that QRLSD could regulate the ratio of dendritic cells, Treg cells, and Th17 cells in the body and inhibit inflammation and keratinocyte proliferation in psoriasis-like skin lesions. Further analysis showed that the p38-MAPK pathway is one of its main signaling pathways. In vitro experiments confirmed that QRLSD suppressed the maturation and activation of BMDCs via the p38-MAPK signaling pathway. ConclusionsThis study suggests that Qingre Lishi Decoction has the promise to be an effective formula for treating psoriasis through the p38-MAPK pathway, which can help break through the current limitations of psoriasis in clinical treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.