Abstract
We present a quantum field theoretical derivation of the nondecay probability of an unstable particle with nonzero three-momentum p. To this end, we use the (fully resummed) propagator of the unstable particle, denoted as S, to obtain the energy probability distribution, called dSp(E), as the imaginary part of the propagator. The nondecay probability amplitude of the particle S with momentum p turns out to be, as usual, its Fourier transform: aSp(t)=∫mth2+p2∞dEdSp(E)e-iEt (mth is the lowest energy threshold in the rest frame of S and corresponds to the sum of masses of the decay products). Upon a variable transformation, one can rewrite it as aSp(t)=∫mth∞dmdS0(m)e-imth2+p2t [here, dS0(m)≡dS(m) is the usual spectral function (or mass distribution) in the rest frame]. Hence, the latter expression, previously obtained by different approaches, is here confirmed in an independent and, most importantly, covariant QFT-based approach. Its consequences are not yet fully explored but appear to be quite surprising (such as the fact that the usual time-dilatation formula does not apply); thus its firm understanding and investigation can be a fruitful subject of future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.