Abstract

SummaryIn the framework of quantitative feedback theory, this paper develops a new method to compute robust stability bounds. This is of special interest when stability is defined directly on the open‐loop function. Thus, ignorance of the plant gain and phase shift can be specifically and independently considered. Furthermore, upper and lower stability margins for both gain and phase can be chosen. However, classical quantitative feedback theory stability specifications are defined as constraining the peak magnitude of closed‐loop functions, which lack the said flexibility. Once the upper tolerance has been defined, all stability margins are determined. Moreover, confining the most restrictive stability margin may result in other excessive margins. However, the stability bounds of the new approach guard just the required distance from the open‐loop frequency response to the critical point. This allows maximization of the available feedback in the functional bandwidth and minimization of the cost of feedback beyond the crossover frequency, provided that the open‐loop frequency response is shaped to closely follow the stability bounds. It should be noted that the new bound computation algorithm performs few and simple arithmetic operations. This makes it far more efficient than traditional methods. The flight altitude control of an unmanned aerial vehicle is proposed as a practical example to show the new method's potential benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.