Abstract

SummaryBackgroundQuantitative electroencephalography (QEEG) is a reliable and non-invasive diagnostic tool to quantify cortical synaptic injury or loss in the clinical assessment of neurodegenerative diseases, and may be able to differentiate various types of dementia. We investigated if QEEG indices can differentiate Parkinson's Disease (PD) with nondementia (PD-ND) from PD with dementia (PDD), and to determine if QEEG indices correlate with inflammation and lipid metabolism markers in PD.MethodsThis clinical study collected data between July 1, 2018 and July 1, 2021 in Zhujiang Hospital of Southern Medical University in China and data was analysed. A total of 125 individuals comprising of 31 PDD, 47 patients with PD-ND and 47 healthy controls were included. We calculated the absolute spectral power (ASP) of frequency bands and the slow-to-fast frequency ratios of specific brain regions. Plasma levels of hypersensitive C-reactive protein (Hs-CRP), superoxide dismutase (SOD), and high-density lipoprotein cholesterol (HDL-C) were measured and correlations with QEEG indices were examined.FindingsA significantly higher ASP of delta frequency especially in the frontal region was observed in patients with PDD compared to PD-ND (P=0.004) and controls (P=0.000). Decreased HDL-C (OR=0.186, P=0.030), and increased Hs-CRP (OR =2.856, P=0.015) were associated with PDD. Frontal-delta ASP was negatively correlated with plasma HDL-C (r=−0.353, P=0.000) and SOD (r=−0.322, P=0.001), and positively correlated with Hs-CRP (r=0.342, P=0.000).InterpretationWe highlight novel correlations between QEEG indices and inflammation and lipid metabolism markers in PD-ND and PDD. QEEG indices, HDL-C and Hs-CRP are potentially useful for the evaluation of PDD. Our current findings suggest that peripheral inflammation might contribute to the pathogenesis of cognitive impairment and EEG slowing in PDD. The mechanism underlying frontal-delta ASP and its correlation with neuro-inflammatory and metabolic markers in PDD should be further investigated.FundingThe National Natural Science Foundation of China (NO: 81873777, 82071414); the Scientific Research Foundation of Guangzhou (NO: 202206010005); the Science and Technology Program of Guangdong of China (NO: 2020A0505100037); the High-level Hospital Construction Research Project of Maoming People's Hospital (NO: xz2020009); the Science and Technology Program of Maoming City (NO: 2021S0026). Dr EK Tan is supported by the National Medical Research Council, Singapore.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call