Abstract

Physicists believe that the world is described in terms of gauge theories. A popular technique for investigating these theories is to discretize them onto a lattice and simulate numerically by a computer, yielding so-called lattice gauge theory. Such computations require at least 1014 floating-point operations, necessitating the use of advanced architecture supercomputers such as the Connection Machine made by Thinking Machines Corporation. Currently the most important gauge theory to be solved is that describing the sub-nuclear world of high energy physics: Quantum Chromo-dynamics (QCD). The simplest example of a gauge theory is Quantum Electro-dynamics (QED), the theory which describes the interaction of electrons and photons. Simulation of QCD requires computer software very similar to that for the simpler QED problem. Our current QED code achieves a computational rate of 1.6 million lattice site updates per second for a Monte Carlo algorithm, and 7.4 million site updates per second for a microcanonical algorithm. The estimated performance for a Monte Carlo QCD code is 200,000 site updates per second (or 5.6 Gflops/sec).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.