Abstract

The QED effective Lagrangian in the presence of an arbitrary constant electromagnetic background field at finite temperature is derived in the imaginary-time formalism to one-loop order. The boundary conditions in imaginary time reduce the set of gauge transformations of the background field, which allows for a further gauge invariant and puts restrictions on the choice of gauge. The additional invariant enters the effective action by a topological mechanism and can be identified with a chemical potential; it is furthermore related to Debye screening. In concordance with the real-time formalism, we do not find a thermal correction to Schwinger's pair-production formula. The calculation is performed on a maximally Lorentz covariant and gauge invariant stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.