Abstract

BackgroundSelection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice. Recently, some drought-tolerant rice varieties have been developed using this selection criterion and successfully released for cultivation in drought-prone target environments. The process can be made more efficient and rapid through marker-assisted breeding, a well-known fast-track approach in crop improvement. QTLs have been identified for grain yield under drought with large effects against drought-susceptible varieties. Most of the identified QTLs show large QTL × environment or QTL × genetic background interactions. The development of mapping populations in the background of popular high-yielding varieties, screening across environments, including the target environments, and the identification of QTLs with a consistent effect across environments can be a suitable alternative marker-assisted breeding strategy. An IR74371-46-1-1 × Sabitri backcross inbred line population was screened for reproductive-stage drought stress at the International Rice Research Institute, Philippines, and Regional Agricultural Research Station, Nepalgunj, Nepal, in the dry and wet seasons of 2011, respectively. A bulk segregant analysis approach was used to identify markers associated with high grain yield under drought.ResultsA QTL, qDTY12.1, significantly associated with grain yield under reproductive-stage drought stress was identified on chromosome 12 with a consistent effect in two environments: IRRI, Philippines, and RARS, Nepalgunj, Nepal. This QTL explained phenotypic variance of 23.8% and contributed an additive effect of 45.3% for grain yield under drought. The positive QTL allele for qDTY12.1 was contributed by tolerant parent IR74371-46-1-1.ConclusionsIn this study, qDTY12.1 showed a consistent effect across environments for high grain yield under lowland reproductive-stage drought stress in the background of popular high-yielding but drought-susceptible recipient variety Sabitri. qDTY12.1 was also reported previously [Crop Sci 47:507–516, 2007] to increase grain yield under upland reproductive-stage drought stress situations. qDTY12.1 is the only QTL reported so far in rice to have shown a large effect against multiple recipient genetic backgrounds as well as under highly diverse upland and lowland rice ecosystems. qDTY12.1 can be successfully introgressed to improve grain yield under drought of popular high-yielding but drought-susceptible lowland as well as upland adapted varieties following marker-assisted breeding.

Highlights

  • Selection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice

  • Phenotypic variances in the population In DS2011, during the flowering period, the water table was below −80 KPa except for one day when it reached −60 KPa (Additional file 2) because of the three rainy days, March 4–6

  • In WS2011, there was no rain during the stress period and the water table depth was around −100 cm throughout the flowering period (Additional file 3)

Read more

Summary

Introduction

Selection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice. The development of mapping populations in the background of popular high-yielding varieties, screening across environments, including the target environments, and the identification of QTLs with a consistent effect across environments can be a suitable alternative marker-assisted breeding strategy. The slow progress in developing rice varieties for drought-prone areas is mainly due to the complex nature of drought-tolerance mechanisms; large genotype × environment, QTL × environment and QTL × recipient genetic background interactions; and the absence of QTLs with a large and consistent effect against high-yielding but drought-susceptible varieties. A strategy of screening in different environments, in the target population of environments (TPE), is advocated for developing varieties with broader adaptation [5] Trait selection is another important concern in drought-tolerance rice breeding programs. During the last few years, several varieties have been developed and released in India, Nepal and Bangladesh following GY under reproductivestage drought stress (RS) as a selection criterion [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call