Abstract

We study several classical-like properties of $q$-deformed nonlinear coherent states as well as nonclassical behaviors of $q$-deformed version of the Schr\"odinger cat states in noncommutative space. Coherent states in $q$-deformed space are found to be minimum uncertainty states together with the squeezed photon distributions unlike the ordinary systems, where the photon distributions are always Poissonian. Several advantages of utilizing cat states in noncommutative space over the standard quantum mechanical spaces have been reported here. For instance, the $q$-deformed parameter has been utilized to improve the squeezing of the quadrature beyond the ordinary case. Most importantly, the parameter provides an extra degree of freedom by which we achieve both quadrature squeezed and number squeezed cat states at the same time in a single system, which is impossible to achieve from ordinary cat states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.