Abstract

Acoustic impedance (AI) inversion is of great interest because it extracts information regarding rock properties from seismic data and has successful applications in reservoir characterization. During wave propagation, anelastic attenuation and dispersion always occur because the subsurface is not perfectly elastic, thereby diminishing the seismic resolution. AI inversion based on the convolutional model requires that the input data be free of attenuation effects; otherwise, low-resolution results are inevitable. The intrinsic instability that occurs while compensating for the anelastic effects via inverse [Formula: see text] filtering is notorious. The gain-limit inverse [Formula: see text] filtering method cannot compensate for strongly attenuated high-frequency components. A nonstationary sparse reflectivity inversion (NSRI) method can estimate the reflectivity series from attenuated seismic data without the instability issue. Although AI is obtainable from an inverted reflectivity series through recursion, small inaccuracies in the reflectivity series can result in large perturbations in the AI result because of the cumulative effects. To address these issues, we have developed a [Formula: see text]-compensated AI inversion method that directly retrieves high-resolution AI from attenuated seismic data without prior inverse [Formula: see text] filtering based on the theory of NSRI and AI inversion. This approach circumvents the intrinsic instability of inverse [Formula: see text] filtering by integrating the [Formula: see text] filtering operator into the convolutional model and solving the inverse problem iteratively. This approach also avoids the ill-conditioned nature of the recursion scheme for transforming an inverted reflectivity series to AI. Experiments on a benchmark Marmousi2 model validate the feasibility and capabilities of our method. Applications to two field data sets verify that the inversion results generated by our approach are mostly consistent with the well logs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call