Abstract

AbstractAs the tools of computational quantum chemistry have continued to mature, larger and more complex molecular systems have become amenable to computational study. However, studies of these complex systems often require the execution of enormous numbers of computations, which can be a tedious and error‐prone process if done manually. We have developed a suite of free, open‐source tools to facilitate the automation of quantum chemistry workflows. These tools are collected under the organization QChASM (Quantum Chemistry Automation and Structure Manipulation) and include functionality for building and manipulating complex molecular structures and performing routine tasks (AaronTools), a toolkit for automating TS optimizations and predictions of the outcomes of selective homogeneous catalytic reactions, and a plug‐in for UCSF ChimeraX that provides a graphical interface for building complex molecular structures and representing output from quantum chemistry computations. These tools are described below, with a focus on the recent Python implementation of AaronTools.This article is categorized under: Structure and Mechanism > Reaction Mechanisms and Catalysis Software > Quantum Chemistry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call