Abstract

A new Monte-Carlo based uncertainty analysis is introduced to quantitatively determine the predictive ability of QCD sum rules. A comprehensive analysis of ground stateρ-meson and nucleon spectral properties is performed. Many of the findings contradict the conventional wisdom of both practitioners and skeptics alike. Associations between the phenomenological fit parameters are particularly interesting as they reveal how the sum rules resolve the spectral properties. The use of derivative sum rules for the determination ofρ-meson spectral properties is shown to be a very unfavorable approach. Most prior nucleon sum rule analyses are based on a sum rule which is found to be invalid; the results are suspect, and should be reevaluated. The “Ioffe formula,” argued by many to qualitatively encapsulate a description of the nucleon mass in terms of the chiral symmetry breaking order parameter ⦠qq⦔ is misleading at best. QCD sum rules are found to be self-consistent without contributions from direct instantons. This implies that instanton effects are adequately accounted for in the nonperturbative vacuum condensates. This in-depth examination of QCD sum rule self consistency paints a favorable picture for further quantitative refinements of the QCD sum rule approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.