Abstract

Because of relativistic off-center motion of the charged spectators and the local momentum-imbalance experienced by the participants, a huge magnetic field is likely generated in high-energy collisions. The influence of such short-lived magnetic field on the QCD phase-transition(s) shall be analysed. From Polyakov linear-sigma model, we study the chiral phase-transition and the magnetic response and susceptibility in dependence on temperature, density and magnetic field strength. The systematic measurements of the phase-transition characterizing signals, such as the fluctuations, the dynamical correlations and the in-medium modifications of rho-meson, for instance, in different interacting systems and collision centralities are conjectured to reveal an almost complete description for the QCD phase-structure and the chemical freezeout. We limit the discussion to NICA energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call