Abstract

The axion field, the angular direction of the complex scalar field associated with the spontaneous symmetry breaking of the Peccei–Quinn (PQ) symmetry, could have originated with initial non-zero velocity. The presence of a non-zero angular velocity resulting from additional terms in the potential that explicitly break the PQ symmetry has important phenomenological consequences such as a modification of the axion mass with respect to the conventional PQ framework or an explanation for the observed matter-antimatter asymmetry. We elaborate further on the consequences of the “kinetic misalignment” mechanism, assuming that axions form the entirety of the dark matter abundance. The kinetic misalignment mechanism possesses a weak limit in which the axion field starts to oscillate at the same temperature as in the conventional PQ framework, and a strong limit corresponding to large initial velocities which effectively delay the onset of oscillations. Following a UV-agnostic approach, we show how this scenario impacts the formation of axion miniclusters, and we sketch the details of these substructures along with potential detecting signatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.