Abstract

We study the transverse properties of hadronic jets in deep inelastic scattering, focusing on features which reflect predominantly the underlying QCD structure rather than the process of hadronization. In particular we discuss the QCD induced asymmetries between the transverse size for forward and backward going jets in the virtual boson-nucleon c.m.s. We also analyze the dependence of this transverse spread on the produced hadron energy and indicate how the QCD pattern differs from that expected from hadronization or primordial transverse momentum. We point out, furthermore, the theoretical, and possibly experimental, advantages of studying the average angular spread of the energy flow rather than the transverse momenta of the particle jets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.