Abstract
The post-quantum security of cryptographic schemes assumes that the quantum adversary only receives the classical result of computations with the secret key. Further, it is unknown whether the post-quantum secure schemes still remain secure if the adversary can obtain a superposition state of the results. In this paper, we formalize one class of public-key encryption schemes named oracle-masked schemes. Then we define the plaintext extraction procedure for those schemes and this procedure simulates the quantum-accessible decryption oracle with a certain loss. The construction of the plaintext extraction procedure does not need to take the secret key as input. Based on this property, we prove the IND-qCCA security of the Fujisaki-Okamoto (FO) transformation in the quantum random oracle model (QROM) and our security proof is tighter than the proof given by Zhandry (Crypto 2019). We also give the first IND-qCCA security proof of the REACT transformation in the QROM. Furthermore, our formalization can be applied to prove the IND-qCCA security of key encapsulation mechanisms with explicit rejection. As an example, we present the IND-qCCA security proof of $$\textsf {T}_{\textsf {CH}}$$ transformation, proposed by Huguenin-Dumittan and Vaudenay (Eurocrypt 2022), in the QROM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.