Abstract

The physical limitations of complementary metal-oxide semiconductor (CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA) is one of the nanotechnologies that is being considered as possible replacements for CMOS. In this paper, a QCA circuit for an n-bit non-restoring binary array divider (NRD) is designed. The proposed divider is developed using multi-layer and a QCA structure of the three-input XOR function. Compared to the previously proposed QCA designs for NRD, the proposed design provides further reduction in cell count, latency, and area. The results for a 3 × 3 NRD show that the proposed design enables 14.8, 14.8, and 20.3% reductions in cell count, latency, and area, respectively. In addition, the proposed 4 × 4 divider achieves 5.5, 18.8, and 33.1% reductions in cell count, latency, and area, respectively, compared to the existing designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.