Abstract

Network Function Virtualization (NFV) is emerging as an efficient mean to deploy and manage network and telecommunication services. With wireless access networks, NFV has to take into account the radio resources at wireless nodes in order to provide an end-to-end optimal virtual network function (VNF) allocation. This topic has been well-studied in existing literature, however, the effects of variations of networks over time have not been addressed yet. In this paper, we provide a model of the adaptive and dynamic VNF allocation problem considering VNF migration. Moreover, we also consider service function chains (SFCs) with QoS constraints. Then we formulate the optimisation problem as an Integer Linear Programming (ILP) and provide a heuristic algorithm for allocating multiple SFCs. The proposed approach allows SFCs to be reallocated so as to obtain the optimal solution over time. The results confirm that the proposed algorithm is able to optimize the network utilization while limiting the reallocation of VNFs which could interrupt services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.